

 Navigation

 	
 index

 	Cabal (ezyang) latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cabal-ezyang/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cabal-ezyang/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Cabal (ezyang) latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

Cabal [image: Hackage version] [https://hackage.haskell.org/package/Cabal] [image: Stackage version] [https://www.stackage.org/package/Cabal] [image: Build Status] [http://travis-ci.org/haskell/cabal] [image: Windows build status] [https://ci.appveyor.com/project/23Skidoo/cabal]

This Cabal Git repository contains the following packages:

		Cabal: the Cabal library package (license)

		cabal-install: the package containing the cabal tool (license)

The canonical upstream repository is located at
https://github.com/haskell/cabal.

Installing Cabal

Assuming that you have a pre-existing, older version of cabal-install,
run:

cabal install cabal-install

To get the latest version of cabal-install. (You may want to cabal update first.)

To install the latest version from the Git repository, clone the
Git repository and then run:

(cd Cabal; cabal install)
(cd cabal-install; cabal install)

Building Cabal for hacking

The current recommended way of developing Cabal is to use the
new-build feature which shipped in cabal-install-1.24 [http://blog.ezyang.com/2016/05/announcing-cabal-new-build-nix-style-local-builds/]. Assuming
that you have a sufficiently recent cabal-install (see above),
it is sufficient to run:

cabal new-build cabal-install

To build a local, development copy of cabal-install. The binary
will be located at
dist-newstyle/build/cabal-install-$VERSION/build/cabal/cabal;
you can determine the $VERSION of cabal-install by looking at
cabal-install/cabal-install.cabal.

Here are some other useful variations on the commands:

cabal new-build Cabal # build library only
cabal new-build Cabal:package-tests # build Cabal's package test suite
cabal new-build cabal-install:integration-tests # etc...

Running tests

Using Travis and AppVeyor.
The easiest way to run tests on Cabal is to make a branch on GitHub
and then open a pull request; our continuous integration service on
Travis and AppVeyor will build and test your code. Title your PR
with WIP so we know that it does not need code review. Alternately,
you can enable Travis on your fork in your own username and Travis
should build your local branches.

Some tips for using Travis effectively:

		Watch over your jobs on the Travis website [http://travis-ci.org].
If you know a build of yours is going to fail (because one job has
already failed), be nice to others and cancel the rest of the jobs,
so that other commits on the build queue can be processed.

		If you want realtime notification when builds of your PRs finish, we have a Slack team [https://haskell-cabal.slack.com/]. To get issued an invite, fill in your email at this sign up page [https://haskell-cabal.herokuapp.com].

		If you enable Travis for the fork of Cabal in your local GitHub, you
can have builds done automatically for your local branch seperate
from Cabal. This is an alternative to opening a PR.

Running tests locally.
To run tests locally with new-build, you will need to know the
name of the test suite you want. Cabal and cabal-install have
several. In general, the test executable for
{Cabal,cabal-install}:$TESTNAME will be stored at
dist-newstyle/build/{Cabal,cabal-install}-$VERSION/build/$TESTNAME/$TESTNAME.

To run a single test, use -p which applies a regex filter to the test names.

		Cabal:package-tests are out-of-process integration tests on the top-level Setup
command line interface. If you are hacking on the Cabal library you
want to run this test suite. It must be run from the Cabal subdirectory
(ugh!) This test suite can be a bit touchy; see
Cabal/tests/README.md for more information.
Build products and test logs are generated and stored in
Cabal/tests/PackageTests under folders named dist-test and
dist-test.$subname.

Handy command line spell to find test logs is:

find . -name test.log|grep test-name

test.sh in the same directory as test.log is intended to let you rerun
the test without running the actual test driver.

		Cabal:unit-tests are small, quick-running unit tests
on small pieces of functionality in Cabal. If you are working
on some utility functions in the Cabal library you should run this
test suite.

		cabal-install:unit-tests are small, quick-running unit tests on
small pieces of functionality in cabal-install. If you are working
on some utility functions in cabal-install you should run this test
suite.

		cabal-install:solver-quickcheck are QuickCheck tests on
cabal-install’s dependency solver. If you are working
on the solver you should run this test suite.

		cabal-install:integration-tests are out-of-process integration tests on the
top-level cabal command line interface. The coverage is not
very good but it attempts to exercise most of cabal-install.

		cabal-install:integration-tests2 are integration tests on some
top-level API functions inside the cabal-install source code.
You should also run this test suite.

Conventions

		Spaces, not tabs.

		Try to follow style conventions of a file you are modifying, and
avoid gratuitous reformatting (it makes merges harder!)

		A lot of Cabal does not have top-level comments. We are trying to
fix this. If you add new top-level definitions, please Haddock them;
and if you spend some time understanding what a function does, help
us out and add a comment. We’ll try to remind you during code review.

		If you do something tricky or non-obvious, add a comment.

		For local imports (Cabal module importing Cabal module), import lists
are NOT required (although you may use them at your discretion.) For
third-party and standard library imports, please use explicit import
lists.

		You can use basically any GHC extension supported by a GHC in our
support window, except Template Haskell, which would cause
bootstrapping problems in the GHC compilation process.

		Our GHC support window is three years: that is, the Cabal library
must be buildable out-of-the-box with the dependencies that shipped
with GHC for at least three years. The Travis CI checks this, so
most developers submit a PR to see if their code works on all
these versions of Haskell. cabal-install must also be buildable
on all these GHCs, although it does not have to be buildable
out-of-the-box. Instead, the cabal-install/bootstrap.sh script
must be able to download and install all of the dependencies.
(This is also checked by CI!)

We like this style guide [https://github.com/tibbe/haskell-style-guide/blob/master/haskell-style.md].

Communicating

There are a few main venues of communication:

		Most developers subscribe to receive messages from all issues [https://github.com/haskell/cabal/issues]; issues can be used to open discussion [https://github.com/haskell/cabal/issues?q=is%3Aissue+is%3Aopen+custom+label%3A%22type%3A+discussion%22]. If you know someone who should hear about a message, CC them explicitly using the @username GitHub syntax.

		For more organizational concerns, the mailing
list [http://www.haskell.org/mailman/listinfo/cabal-devel] is used.

		Many developers idle on #hackage on irc.freenode.net. #ghc is
also a decently good bet.

API Documentation

Auto-generated API documentation for the master branch of Cabal is automatically uploaded here: http://haskell.github.io/cabal-website/doc/html/Cabal/.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

Cabal/README.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

The Cabal library package

See the Cabal web site [http://www.haskell.org/cabal/] for more information.

If you also want the cabal command-line program, you need the
cabal-install package in addition to this library.

Installing the Cabal library

If you already have the cabal program

In this case run:

$ cabal install

However, if you do not have an existing version of the cabal program,
you first must install the Cabal library. To avoid this bootstrapping
problem, you can install the Cabal library directly as described below.

Installing as a user (no root or administrator access)

ghc -threaded --make Setup
./Setup configure --user
./Setup build
./Setup install

Note the use of the --user flag at the configure step.

Compiling ‘Setup’ rather than using runghc Setup is much faster and
works on Windows. For all packages other than Cabal itself, it is fine
to use runghc.

This will install into $HOME/.cabal/ on Unix and into
Documents and Settings\$User\Application Data\cabal\ on Windows.
If you want to install elsewhere, use the --prefix= flag at the
configure step.

Installing as root or Administrator

ghc -threaded --make Setup
./Setup configure
./Setup build
sudo ./Setup install

Compiling Setup rather than using runghc Setup is much faster and
works on Windows. For all packages other than Cabal itself, it is fine
to use runghc.

This will install into /usr/local on Unix, and on Windows it will
install into $ProgramFiles/Haskell. If you want to install elsewhere,
use the --prefix= flag at the configure step.

Using older versions of GHC and Cabal

It is recommended that you leave any pre-existing version of Cabal
installed. In particular, it is essential you keep the version that
came with GHC itself, since other installed packages require it (for
instance, the “ghc” API package).

Prior to GHC 6.4.2, however, GHC did not deal particularly well with
having multiple versions of packages installed at once. So if you are
using GHC 6.4.1 or older and you have an older version of Cabal
installed, you should probably remove it by running:

$ ghc-pkg unregister Cabal

or, if you had Cabal installed only for your user account, run:

$ ghc-pkg unregister Cabal --user

The filepath dependency

Cabal uses the filepath [http://hackage.haskell.org/package/filepath] package, so it must be installed first.
GHC version 6.6.1 and later come with filepath, however, earlier
versions do not by default. If you do not already have filepath,
you need to install it. You can use any existing version of Cabal to do
that. If you have neither Cabal nor filepath, it is slightly
harder but still possible.

Unpack Cabal and filepath into separate directories. For example:

tar -xzf filepath-1.1.0.0.tar.gz
tar -xzf Cabal-1.6.0.0.tar.gz

rename to make the following instructions simpler:
mv filepath-1.1.0.0/ filepath/
mv Cabal-1.6.0.0/ Cabal/

cd Cabal
ghc -i../filepath -cpp --make Setup.hs -o ../filepath/setup
cd ../filepath/
./setup configure --user
./setup build
./setup install

This installs filepath so that you can install Cabal with the normal
method.

More information

Please see the Cabal web site [http://www.haskell.org/cabal/] for the user guide [http://www.haskell.org/cabal/users-guide] and API
documentation [http://www.haskell.org/cabal/release/cabal-latest/doc/API/Cabal/Distribution-Simple.html]. There is additional information available on the
development wiki [https://github.com/haskell/cabal/wiki].

Bugs

Please report bugs and feature requests to Cabal’s bug tracker [https://github.com/haskell/cabal/issues].

Your help

To help Cabal’s development, it is enormously helpful to know from
Cabal’s users what their most pressing problems are with Cabal and
Hackage [http://hackage.haskell.org]. You may have a favourite Cabal bug or limitation. Look at
Cabal’s bug tracker [https://github.com/haskell/cabal/issues]. Ensure that the problem is reported there and
adequately described. Comment on the issue to report how much of a
problem the bug is for you. Subscribe to the issues’s notifications to
discussed requirements and keep informed on progress. For feature
requests, it is helpful if there is a description of how you would
expect to interact with the new feature.

Source code

You can get the master development branch using:

$ git clone https://github.com/haskell/cabal.git

Credits

Cabal developers (in alphabetical order):

		Krasimir Angelov

		Bjorn Bringert

		Duncan Coutts

		Isaac Jones

		David Himmelstrup (“Lemmih”)

		Simon Marlow

		Ross Patterson

		Thomas Schilling

		Martin Sjögren

		Malcolm Wallace

		and nearly 30 other people have contributed occasional patches

Cabal specification authors:

		Isaac Jones

		Simon Marlow

		Ross Patterson

		Simon Peyton Jones

		Malcolm Wallace

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/down.png

cabal-install/README.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

The cabal-install package

See the Cabal web site [http://www.haskell.org/cabal/] for more information.

The cabal-install package provides a command line tool named cabal.
It uses the Cabal library and provides a user interface to the
Cabal/Hackage [http://hackage.haskell.org] build automation and package management system. It can
build and install both local and remote packages, including
dependencies.

Installing the cabal command-line tool

The cabal-install package requires a number of other packages, most of
which come with a standard GHC installation. It requires the network [http://hackage.haskell.org/package/network]
package, which is sometimes packaged separately by Linux distributions;
for example, on Debian or Ubuntu, it is located in the
“libghc6-network-dev” package.

cabal requires a few other Haskell packages that are not always
installed. The exact list is specified in the .cabal file or in the
bootstrap.sh file. All these packages are available from Hackage [http://hackage.haskell.org].

Note that on some Unix systems you may need to install an additional
zlib development package using your system package manager; for example,
on Debian or Ubuntu, it is located in the “zlib1g-dev” package; on
Fedora, it is located in the “zlib-devel” package. It is required
because the Haskell zlib package uses the system zlib C library and
header files.

The cabal-install package is now part of the Haskell Platform [http://www.haskell.org/platform/], so you
do not usually need to install it separately. However, if you are
starting from a minimal GHC installation, you need to install
cabal-install manually. Since it is an ordinary Cabal package,
cabal-install can be built the standard way; to facilitate this, the
process has been partially automated. It is described below.

Quick start on Unix-like systems

As a convenience for users on Unix-like systems, there is a
bootstrap.sh script that will download and install each of
cabal-install‘s dependencies in turn.

$./bootstrap.sh

It will download and install the dependencies. The script will install the
library packages (vanilla, profiling and shared) into $HOME/.cabal/ and the
cabal program into $HOME/.cabal/bin/. If you don’t want to install profiling
and shared versions of the libraries, use

$ EXTRA_CONFIGURE_OPTS="" ./bootstrap.sh

You then have the choice either to place $HOME/.cabal/bin on your
$PATH or move the cabal program to somewhere on your $PATH. Next,
you can get the latest list of packages by running:

$ cabal update

This will also create a default configuration file, if it does not
already exist, at $HOME/.cabal/config.

By default, cabal will install programs to $HOME/.cabal/bin. If you
do not want to add this directory to your $PATH, you can change
the setting in the config file; for example, you could use the
following:

symlink-bindir: $HOME/bin

Quick start on Windows systems

For Windows users, a precompiled program (cabal.exe [http://www.haskell.org/cabal/release/cabal-install-latest/]) is provided.
Download and put it somewhere on your %PATH% (for example,
C:\Program Files\Haskell\bin.)

Next, you can get the latest list of packages by running:

$ cabal update

This will also create a default configuration file (if it does not
already exist) at
C:\Documents and Settings\%USERNAME%\Application Data\cabal\config.

Using cabal

There are two sets of commands: commands for working with a local
project build tree and those for working with packages distributed
from Hackage [http://hackage.haskell.org].

For the list of the full set of commands and flags for each command,
run:

$ cabal help

Commands for developers for local build trees

The commands for local project build trees are almost the same as the
runghc Setup command-line interface you may already be familiar with.
In particular, it has the following commands:

		cabal configure

		cabal build

		cabal haddock

		cabal clean

		cabal sdist

The install command is somewhat different; it is an all-in-one
operation. If you run cabal install in your build tree, it will
configure, build, and install. It takes all the flags that configure
takes such as --global and --prefix.

In addition, cabal will download and install any dependencies that are
not already installed. It can also rebuild packages to ensure a
consistent set of dependencies.

Commands for released Hackage packages

$ cabal update

This command gets the latest list of packages from the Hackage [http://hackage.haskell.org] server.
On occasion, this command must be run manually–for instance, if you
want to install a newly released package.

$ cabal install xmonad

This command installs one or more named packages, and all their
dependencies, from Hackage. By default, it installs the latest available
version; however, you may specify exact versions or version ranges. For
example, cabal install alex-2.2 or cabal install parsec < 3.

$ cabal list xml

This does a search of the installed and available packages. It does a
case-insensitive substring match on the package name.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

cabal-install/tests/README.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

Integration Tests

Each test is a shell script. Tests that share files (e.g., .cabal files) are
grouped under a common sub-directory of IntegrationTests. The framework
copies the whole group’s directory before running each test, which allows tests
to reuse files, yet run independently. A group’s tests are further divided into
should_run and should_fail directories, based on the expected exit status.
For example, the test
IntegrationTests/exec/should_fail/exit_with_failure_without_args.sh has access
to all files under exec and is expected to fail.

Tests can specify their expected output. For a test named x.sh, x.out
specifies stdout and x.err specifies stderr. Both files are optional.
The framework expects an exact match between lines in the file and output,
except for lines beginning with “RE:”, which are interpreted as regular
expressions.

IntegrationTests.hs defines several environment variables:

		CABAL - The path to the executable being tested.

		GHC_PKG - The path to ghc-pkg.

		CABAL_ARGS - A common set of arguments for running cabal.

		CABAL_ARGS_NO_CONFIG_FILE - CABAL_ARGS without --config-file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

Cabal/tests/README.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

Writing package tests

The tests under the PackageTests directory define and build packages
that exercise various components of Cabal. Each test case is an HUnit [http://hackage.haskell.org/package/HUnit]
test. The entry point for the test suite, where all the test cases are
listed, is PackageTests.hs. There are utilities for calling the stages
of Cabal’s build process in PackageTests/PackageTester.hs; have a look
at an existing test case to see how they are used.

In order to run the tests, PackageTests needs to know where the inplace
copy of Cabal being tested is, as well as some information which was
used to configure it. By default, PackageTests tries to look at the
LocalBuildInfo, but if the format of LocalBuildInfo has changed
between the version of Cabal which ran the configure step, and the
version of Cabal we are testing against, this may fail. In that
case, you can manually specify the information we need using
the following environment variables:

		CABAL_PACKAGETESTS_GHC is the path to the GHC you compiled Cabal with

		CABAL_PACKAGETESTS_WITH_GHC is the path for the GHC you want to have
Cabal use when running tests; i.e., you can change this to a different
version of GHC to see how Cabal handles that version. If omitted,
it defaults to CABAL_PACKAGETESTS_GHC.

		CABAL_PACKAGETESTS_DB_STACK is a PATH-style list of package database paths,
clear, global and user. Each component of the list is
interpreted the same way as Cabal’s -package-db flag. This list
must contain the copy of Cabal you are planning to test against
(as well as its transitive dependencies). By default, we guess
that it is just the global and user database. However, if some of
Cabal’s dependencies were installed in a sandbox or other non-standard
location, you will need to add it. Most commonly, if you are are
using ‘new-build’ you’ll need to add
dist-newstyle/packagedb/ghc-VERSION to your database stack. (In
most situations, the actual inplace database Cabal was registered
into is automatically detected.)

There are a few extra options to toggle (e.g. CABAL_PACKAGETESTS_GHC_PKG
lets you explicitly set ghc-pkg in case Cabal can’t autodetect it) but
the three above.

If you can successfully run the test suite, we’ll print out examples
of all of these values for you under “Environment”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Cabal/tests/PackageTests/HaddockNewline/ChangeLog.html

 Navigation

 		
 index

 		Cabal (ezyang) latest documentation »

Revision history for HaddockNewline

0.1.0.0 – YYYY-mm-dd

		First version. Released on an unsuspecting world.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

